
NOTE 2.1: Level of Measurement 
 

Variables constitute scales of values. The variable, ‘biological sex’, is commonly (though not 
unproblematically) understood to take two values, female and male; another might be 
personal computer operating system that might take the values Mac OS, Windows, Linux.  
For these scales, the values stand in no particular order. Scales such as these are at a 
‘nominal’ ‘level of measurement’. Because they cannot be placed in order, no arithmetic 
operations should be carried out on them: it is not meaningful to refer to a ‘mean’ gender 
or a ‘total’ operating system. The Likert Scale used by Sanderson is a 5-point scale: strongly 
disagree; disagree; neither agree nor disagree; agree; strongly agree. There is clearly an 
order to these values. Where the values can be ordered, but the intervals between the 
values is not consistent, then the scale is at an ‘ordinal’ level of measurement and 
arithmetic operations still cannot be carried out on such scales. Now, if we think that the 
interval between, say, strongly disagree and disagree may be greater or smaller than the 
interval between disagree and neither agree nor disagree or that between agree and 
strongly agree, then the scale remains at the ordinal level and we are not permitted to 
conduct arithmetic operations on it. Since the whole point of designing a survey instrument 
on the basis of a Likert scale is to conduct statistical analysis on the results—and this 
certainly involves arithmetic operations—then this would seem to render the method 
unhelpful. Those employing the method, however, take the view that it is reasonable to 
assume that the intervals between the values of a Likert scale are equal so that statistical 
analysis of the responses is valid. This assumption raises the Likert scale to the ‘interval’ 
level of measurement. Sanderson, like many others, clearly takes this view and, as a first 
step, has assigned numerical values to the points of the scale so that they can be summed. 
 
There is a limit to the range of arithmetic operations that can be used with interval scales 
and this limit excludes multiplication and division. This is because interval scales do not have 
an absolute zero. Scales that do have this property are ‘ratio’ scales. Age, pulse rate, 
temperature in Kelvin (or Absolute) are ratio scales; temperature in degrees Celsius or 
Fahrenheit are interval scale, because zero in these scales is not a true zero, but arbitrarily 
defined and it can (and often does) get colder; zero Kelvin means zero heat! 
 
It is worth pointing out at this stage that many if not most of the categories that are of 
interest in social research are nominal or ordinal scales. An example drawn from participant 
observation is ‘researcher role’, which takes the values: participant; observer. Now here is 
an expression of a widely held view: 
 

The role the observer plays forms a continuum from completely removed to completely engaged 
with the participant. (Sauro, J. 2015; https://measuringu.com/observation-role/) 

 
In contrast, I hold to the view that researcher role is a nominal category because there is no 
metric incorporated within the category that quantifies the amount of participation or the 
amount of observation. This being the case the formation of a continuum is not possible. 
Clearly, in an actual instance of fieldwork the researcher may sometimes or in some 
respects be acting as a participant and at other times or in other respects be acting as an 
observer. An analysis of their role, then, would involve coding their activity and aggregating 
the values either as a qualitative description or using an alternative quantifiable variable 



such as time. The latter, however, may well be seen to reduce the crucial differences 
between and within the roles. 
 
  



NOTE 2.2: Frequency Distribution 
 
The image below shows four frequency distributions that vary in respect of three 
parameters: 
 

The mean value (μ) of the variable x, which is 0 in three cases and -2 in one; 
The maximum value of the frequency (φ), where the value of x is the mode; 
And the width or spread of the distribution, which is measured by the variance, 
σ2. 
 

σ2, incidentally, is the square of the standard deviation, σ. 
 

 
Original diagram at https://en.wikipedia.org/wiki/Normal_distribution#/media/File:Normal_Distribution_PDF.svg. Copyright free. 

 

The distributions in the diagram are all normal distributions, which is to say, they are each 
symmetrical about their respective means, so the mean is equal to the mode. A distribution 
where the mode is shifted to the right is negatively skewed, one that is shifted to the left is 
positively skewed as illustrated below. 
 

 
Rodolfo Hermans (Godot) at en.wikipedia. [<a href="https://creativecommons.org/licenses/by-sa/3.0">CC BY-SA 3.0</a>], <a 
href="https://commons.wikimedia.org/wiki/File:Negative_and_positive_skew_diagrams_(English).svg">via Wikimedia Commons</a> 

 
The shaded areas are the regions to the left or right of the normal distribution. 

 
Other shapes of distributions are possible including multimodal distributions that have more 
than one ‘hump’. 



 
Note 2.3: How many factors to retain 

 
The diagram shows the scree plot of eigenvalues for each of twelve common factors that 
have been extracted. Two of the rules for deciding how many factors to retain are: 
 

The Kaiser rule, which tells you to retain those factors having eigenvalues greater 
than 1 
 
The scree plot rule, which tells you to retain those factors to the left of the elbow 
in the graph. 
 

In this (fictitious) case both rules retain two factors. 
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NOTE 2.4: Rotation of Axes 

 
The first diagram shows the (fictitious) plot of a 2-factor solution. The loading of factor 1 on 
each measured variable is plotted on the x-axis, the loadings of factor 2 on the y-axis. You 
can see that the measured variables form clusters (the result of the iterations), but the 
clusters are not grouped on either factor, so there is no clear interpretation of the meanings 
of the factors. 
 

 
 

The second diagram, shows the result of an oblique rotation of the axes, which now align 
quite closely with the respective clusters of measured variables. An inspection of the 
measured variables in each cluster will enable an interpretation of each rotated factor. An 
alternative would have been to perform an orthogonal rotation, which would retain the 
orthogonality—the mutual independence—of the factors. This would not have resulted in as 
clear an analysis in this case. The mathematics for orthogonal rotation is simpler, but, since 
the computation is nowadays handled by computer, Osborne (2015) suggests that there is 
no compelling reason to use orthogonal rotation: if there is no correlation between the 
factors oblique rotation will not force a correlation and will produce much the same 
outcome as orthogonal rotation. 
 

 
  



Note 2.5: Random Sample 
 

A simple random sample is on in which each member of a population has an equal 
probability of being selected for the sample.  
 
If I want a 10 percent simple random sample of a population, then I should ideally pick the 
names out of a hat or get a computer to simulate this process, but I could achieve a 10 
percent systematic random sample from a list of the population, first choosing a number 
between 1 and 10 (for example, by sticking a pin in a page of random numbers), if this turns 
out to be, say, 3, then the 3rd member of the population is selected and every tenth 
member thereafter. 
 
In practice it is rarely possible to generate an accurate listing of the population—the 
population of England, for example—so an approximation, such as the electoral register for 
England is used. The sample is then drawn from this sampling frame. I could ensure that 
particular categories—for example genders or age ranges—were approximately equally 
represented in the sample by stratifying the sampling frame by these categories (listing all 
females then all males and/or listing each age range separately) to generate a stratefied 
random sample. 
 
If one wanted to interview sample of UCL undergraduates, then it might be convenient first 
to take a random sample of undergraduate courses and interview everyone in the resulting 
cluster sample of courses. In a larger population—say the UK electorate—one might use a 
multistage sampling method by first taking a random sample of constituencies, then a 
random sample of postcodes within this sample, and finally a sample (simple random or 
even 100 percent sample) of households within the sampled postcodes. 
 
The rationale for using random sampling methods entails the assumption that, if the sample 
is random and not motivated in some way, then its characteristics will match those of the 
population. This principle is somewhat weakened by the compromises in the above 
methods. The UK electoral register, which may be used as a sampling frame, is not the same 
as the UK population, for example: it lists only those who are eligible and who have 
registered to vote and there are reasons why some people choose not to register. Each 
deviation from a simple random sample of the population introduces biases into the sample 
and possible biases should be taken into account when interpreting the findings of a survey 
or experiment. 
  



Note 2.6: Statistical Significance 
 
My colleague Andrew Brown examined diaries written by parents in two London schools, 
the diaries being reports by parents on their children’s homework activities as part of a 
parental involvement project  (Brown, 1999). Each parent was categorised as being either a 
localiser or a generaliser on the basis of their diary entries. The results are summarised in 
Table 2.1. 
 
Table 2.1: Generalisers and localisers amongst samples of parents in two London schools 
 
 East Wood Chambers total 

localiser 28 48 76 

generaliser 28 6 34 

Total 56 54 110 
 
We would like to know whether these findings reveal any difference between the parents at 
the two schools. The difference in the localiser:generaliser ratios in the two schools suggests 
that there is a substantial difference. However, if the samples were drawn at random from 
each school, then it is possible that this result could have arisen on this occasion and on 
another occasion the results might have been very different, even reversing the apparent 
contrast. We would like to know the probability that this result would be achieved if in fact 
there was no difference in the distribution of localisers and generalisers in the two schools. 
The proposition that there is no difference is called the null hypothesis. We can calculate the 
probability of arriving at this result using an Excel spreadsheet, selecting the CHISQ.TEST 
(chi-square test) function and inputing the shaded region of Table 2.1 as the ‘Actual range’. 
To complete the formula we must first calculate the ‘Expected range’. If the null hypothesis 
holds, then the ratio of localisers to generalisers would be the same in each school, that is, 
76/110 for localisers and 34/110 for generalisers. We multiply these ratios by the number of 
parents in each school to find the expected values, that is, the values that we expect if the 
null hypothesis holds. The ‘Expected range’ for the formula in Excel is shown in the shaded 
cells in Table 2.2. The contents of the cells are in the format to be inserted in the Excel table 
(pressing return after each entry). 
 
Table 2.2: Expected frequencies under the null hypothesis for Brown’s data 
 
 East Wood Chambers total 

localiser =76*56/110 =76*54/110 76 

generaliser =34*56/110 =34*54/110 34 

Total 56 54 110 
 
Entering these ranges in the CHISQ.TEST yields a p-value of 1.02271E-05, which is the 
‘exponential’ form of 0.00002271, which is the probability of obtaining the results in Table 
2.1 if the null hypothesis holds. This is a very small probability, in other words, it is very 
unlikely indeed that Brown would have obtained the results that he did if there had been no 



association between the ratio of localisers to generalisers and the two schools. We say that 
the result is statistically significant.  
 
Conventionally, the researcher can claim statistical significance if the p-value is below the 5 
percent level (0.05) or—a stronger claim—below the 1 percent level (0.01). 
 
It is important to note that statistical significance is not the same as substantive significance. 
In general, if the sample size is large enough, even very small substantive differences may 
prove to be statistically significant. This distinction would be particularly relevant where the 
test is measuring the effectiveness of a drug in the treatment of a health problem: the drug 
may yield statistically significant results, but if the substantive benefits are very small can 
the potential cost of its use be justified? 
 
All statistical tests involve assumptions about the data and it is important that these 
assumptions are valid. Recall that it is a moot point whether a Likert scale produces interval 
rather than ordinal level data as required by Exploratory Analysis (Note 2.1). Chi-square 
requires that the data in the cells are frequencies (ie not percentages) and that the 
expected frequencies are all at least 5; these assumptions hold for Brown’s data (complete 
the calculations in Table 2.2 to check the second assumption). Also, the categories should be 
independent, which is the case here: each subject is either a localiser or a generaliser and is 
associated either with East Wood or Chambers school. 
 
Now the chi-square test result tells us that there is an association between the two variables 
(the columns and rows of Table 2.1). This does not, however, say anything about the 
strength of the association, which we can estimate using Pearson’s phi coefficient, which, in 
the case of a 2x2 contingency table (as we have here) is the square root of the chi square 
statistic divided by the number of observations. We have the p-value, here, but not yet the 
chi square statistic itself. To calculate this (the calculation is not directly available in Excel) 
for each cell we square the difference between the actual and expected frequencies and 
divide this by the expected frequency, then sum these values. For these results the chi 
square value is 19.47 (rounded up), which gives us a value of 0.177 for phi squared and 
0.421 for phi. Conventionally, a coefficient of correlation (which this is) value of greater than 
0.4 indicates a “relatively” strong correlation. 
 
Note that we cannot infer causality from a coefficient of correlation. In this case it seems 
clear that we would not expect a change of school necessarily to transform a parent from a 
localiser to a generaliser, but there are many instances where this is not as obvious and 
people do make the mistake of inferring causality from a correlation: this is incorrect. If 
there is a correlation between two variables this entails that as one variable increases so 
does the other (a positive correlation) or as one variable increases the other decreases (a 
negative correlation). This does not necessarily mean that the increase in the first variable 
causes the increase or decrease in the other, there may, for example, be other factors that 
cause the changes in both. 
  


